MATH 3060 Assignment 6 solution

Chan Ki Fung

November 18, 2022

- 1. Let $x_n = 0, y_n = \frac{\pi}{2n}$, then $|x_n y_n| \to 0$ but $\cos(nx_n) \cos(ny_n) = 1$.
- 2. Let $\epsilon > 0$, choose $\delta > 0$ s.t. $|\phi(x) \phi(y)| < \epsilon$ whenever $|x y| < \delta$. Then clearly $|f_n(x) f_n(y)| < \epsilon$ when $|x y| < \delta$. If ϕ is not uniformly continuous, then $f_n = \phi(x - n)$ is also not uniformly continuous, so $\{f_n\}$ is not equicontinuous.
- 3. Let $\{f_{n,k,1}\}$ be a subsequence of f_n that converges uniformly on [-1,1], and let $\{f_{n,k,1}\}$ be a subsequence of $\{f_{n,k,1}\}$ that converges uniformly on [-2,2] and so on. Now define $f_{n,k} = f_{n,k,k}$, then $\{f_{n,k}\}$ converges pointwise on \mathbb{R} .
- 4. $F(x)| = |\int_0^x |f_n|| \le |\int_0^1 |f_n|| \le \sqrt{M}$ by Cauchy Schwartz inequality. Now we want to show $\{F_n\}$ is equicontinuous. Let $x < y \in [0, 1]$, then

$$|F(x) - F(y)| = |\int_y^x f_n|$$

= $|\int_y^x (f_n \cdot 1)|$
= $\sqrt{\int_y^x f_n^2 \int_y^x 1^2}$
 $\leq \sqrt{M} |x - y|^{1/2},$

so $\{F_n\}$ is in fact Hölder continuous with the constants independent of n.